Nondeterministic unordered finite tree automaton without epsilon transitions. Accepts regular tree languages.
More...
|
| | UnorderedNFTA () |
| | Creates a new instance of the automaton. More...
|
| |
| | UnorderedNFTA (ext::set< StateType > states, ext::set< common::ranked_symbol< SymbolType > > inputAlphabet, ext::set< StateType > finalStates) |
| | Creates a new instance of the automaton with a concrete set of states, input alphabet, and a set of final states. More...
|
| |
| | UnorderedNFTA (const UnorderedDFTA< SymbolType, StateType > &other) |
| |
| const ext::set< StateType > & | getStates () const & |
| |
| ext::set< StateType > && | getStates () && |
| |
| bool | addState (StateType state) |
| |
| void | setStates (ext::set< StateType > states) |
| |
| void | removeState (const StateType &state) |
| |
| const ext::set< StateType > & | getFinalStates () const & |
| |
| ext::set< StateType > && | getFinalStates () && |
| |
| bool | addFinalState (StateType state) |
| |
| void | setFinalStates (ext::set< StateType > states) |
| |
| void | removeFinalState (const StateType &state) |
| |
| const ext::set< common::ranked_symbol< SymbolType > > & | getInputAlphabet () const & |
| |
| ext::set< common::ranked_symbol< SymbolType > > && | getInputAlphabet () && |
| |
| bool | addInputSymbol (common::ranked_symbol< SymbolType > symbol) |
| |
| void | addInputSymbols (ext::set< common::ranked_symbol< SymbolType > > symbols) |
| |
| void | setInputAlphabet (ext::set< common::ranked_symbol< SymbolType > > symbols) |
| |
| void | removeInputSymbol (const common::ranked_symbol< SymbolType > &symbol) |
| |
| bool | addTransition (common::ranked_symbol< SymbolType > symbol, ext::multiset< StateType > prevStates, StateType next) |
| | Add a transition to the automaton. More...
|
| |
| bool | removeTransition (const common::ranked_symbol< SymbolType > &symbol, const ext::multiset< StateType > &states, const StateType &next) |
| | Removes a transition from the automaton. More...
|
| |
| const ext::multimap< ext::pair< common::ranked_symbol< SymbolType >, ext::multiset< StateType > >, StateType > & | getTransitions () const & |
| |
| ext::multimap< ext::pair< common::ranked_symbol< SymbolType >, ext::multiset< StateType > >, StateType > && | getTransitions () && |
| |
| ext::multimap< ext::pair< common::ranked_symbol< SymbolType >, ext::multiset< StateType > >, StateType > | getTransitionsToState (const StateType &q) const |
| |
| ext::multimap< ext::pair< common::ranked_symbol< SymbolType >, ext::multiset< StateType > >, StateType > | getTransitionsFromState (const StateType &q) const |
| |
| bool | isDeterministic () const |
| | Determines whether the automaton is deterministic. More...
|
| |
| auto | operator<=> (const UnorderedNFTA &other) const |
| |
| bool | operator== (const UnorderedNFTA &other) const |
| |
| void | accessComponent () |
| |
template<class SymbolTypeT = DefaultSymbolType, class StateTypeT = DefaultStateType>
class automaton::UnorderedNFTA< SymbolTypeT, StateTypeT >
Nondeterministic unordered finite tree automaton without epsilon transitions. Accepts regular tree languages.
Definition is similar to classical definition of finite automata. A = (Q, \Sigma, \delta, F), Q (States) = nonempty finite set of states, \Sigma (TerminalAlphabet) = finite set of terminal ranked symbols - having this empty won't let automaton do much though,
- the alphabet may be partitioned based on the arity of symbols into \Sigma_n, where n is the arity. \delta = transition function of the form \cup^n(Q) \times \Sigma_n -> P(Q), where \cup^n(Q) is a multiset of states and P(Q) is a powerset of states, F (FinalStates) = set of final states
Elements of the \delta multimapping must meet following criteria. The size of the state list must equal the rank of the ranked symbol.
- Template Parameters
-
| SymbolTypeT | used for the symbol part of the ranked symbol |
| StateTypeT | used to the states, and the initial state of the automaton. |