|
| template<typename TGraph , typename TNode , typename F = std::function<bool(const TNode &, const typename TGraph::edge_type::weight_type &)>> |
| static void | run (const TGraph &graph, const TNode &start, F f_user=[](const TNode &, const typename TGraph::edge_type::weight_type &) -> bool { return false;}) |
| |
| template<typename TGraph , typename TNode , typename F = std::function<void(const TNode &, const typename TGraph::edge_type::weight_type &)>> |
| static ext::pair< ext::vector< TNode >, typename TGraph::edge_type::weight_type > | findPath (const TGraph &graph, const TNode &start, const TNode &goal, F f_user=[](const TNode &, const typename TGraph::edge_type::weight_type &) {}) |
| |
| template<typename TGraph , typename TNode > |
| static ext::pair< ext::vector< TNode >, typename TGraph::edge_type::weight_type > | findPathRegistration (const TGraph &graph, const TNode &start, const TNode &goal) |
| |
| template<typename TGraph , typename TNode , typename F = std::function<void(const TNode &, const typename TGraph::edge_type::weight_type &)>> |
| static ext::pair< ext::vector< TNode >, typename TGraph::edge_type::weight_type > | findPathBidirectional (const TGraph &graph, const TNode &start, const TNode &goal, F f_user=[](const TNode &, const typename TGraph::edge_type::weight_type &) {}) |
| |
| template<typename TGraph , typename TNode > |
| static ext::pair< ext::vector< TNode >, typename TGraph::edge_type::weight_type > | findPathBidirectionalRegistration (const TGraph &graph, const TNode &start, const TNode &goal) |
| |
template<typename TGraph , typename TNode , typename F >
| ext::pair< ext::vector< TNode >, typename TGraph::edge_type::weight_type > graph::shortest_path::Dijkstra::findPath |
( |
const TGraph & |
graph, |
|
|
const TNode & |
start, |
|
|
const TNode & |
goal, |
|
|
F |
f_user = [](const TNode &, const typename TGraph::edge_type::weight_type &) {} |
|
) |
| |
|
static |
Find the shortest path using Dijkstra algorithm from the start node to the goal node in the graph.
Whenever node is opened, f_user is called with two parameters (the opened node and value of currently shortest path).
- Parameters
-
| graph | to explore. |
| start | initial node. |
| goal | final node. |
| f_user | function which is called for every open node with value of currently shortest path. |
- Returns
- pair where first := shortest path := distance of path, if there is no such path vector is empty and distance std::numeric_limits<edge_type:weight_type>::max().
- Note
- TEdge of
graph must follow graph::edge::WeightedEdge interface.
- See also
- graph::edge_type::WeightedEdge.
- Exceptions
-
| std::out_of_range | if graph contains an edge with a negative weight. |
template<typename TGraph , typename TNode , typename F >
| ext::pair< ext::vector< TNode >, typename TGraph::edge_type::weight_type > graph::shortest_path::Dijkstra::findPathBidirectional |
( |
const TGraph & |
graph, |
|
|
const TNode & |
start, |
|
|
const TNode & |
goal, |
|
|
F |
f_user = [](const TNode &, const typename TGraph::edge_type::weight_type &) {} |
|
) |
| |
|
static |
Find the shortest path using Dijkstra algorithm from the start node to the goal node in the graph. This algorithm is run in both direction, from start and also from goal.
Whenever node is opened, f_user is called with two parameters (the opened node and value of currently shortest path).
- Parameters
-
| graph | to explore. |
| start | initial node. |
| goal | final node. |
| f_user | function which is called for every open node with value of currently shortest path. |
- Returns
- pair where first := shortest path := distance of path, if there is no such path vector is empty and distance std::numeric_limits<edge_type:weight_type>::max().
- Note
- TEdge of
graph must follow graph::edge::WeightedEdge interface.
- See also
- graph::edge_type::WeightedEdge.
- Exceptions
-
| std::out_of_range | if graph contains an edge with a negative weight. |
template<typename TGraph , typename TNode , typename F >
| void graph::shortest_path::Dijkstra::run |
( |
const TGraph & |
graph, |
|
|
const TNode & |
start, |
|
|
F |
f_user = [](const TNode &, const typename TGraph::edge_type::weight_type &) -> bool { return false; } |
|
) |
| |
|
static |
Run Dijkstra algorithm from the start node in the graph.
Whenever node is opened, f_user is called with two parameters (the opened node and value of currently shortest path). If return of f_user is true, then the algorithm is stopped.
- Parameters
-
| graph | to explore. |
| start | initial node. |
| f_user | function which is called for every opened node with value of currently shortest path. |
- Note
- TEdge of
graph must follow graph::edge::WeightedEdge interface.
- See also
- graph::edge_type::WeightedEdge.
- Exceptions
-
| std::out_of_range | if graph contains an edge with a negative weight. |